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Abstract

A key component in panel board production is the fibre refiner, whose task is to break cellulose wood chips into slender

fibres. This refining process takes place between a rotor and a stator, where a gap of around 0.5mm is found. In the

development of these refiners predicting the dynamics is important; hence, mathematical models are needed. For refiners

and other applications like brakes, turbines, and compressors, the interaction between the rotor and the surrounding

medium can in many situations be significant. In addition to external load, this interaction can also change the

characteristics of the system, which should be considered in the design process. Today, there exists no validated load model

for fibre refiner process. Hence, the aim of this paper is to suggest one.

Measured axial force data were divided into a constant part and a superimposed oscillating part with different

frequencies. For both parts a linear dependence on the gap between the stator and the rotor was assumed. Finally, a four

degrees of freedom (dof) model was used to fit a pressure distribution to the axial force model.

This process load model led to stiffness and external loads that can be both time dependant. If the pressure distribution

only shows a radial variation along the refining zone, all the external loads except the axial one will vanish. The number of

functions describing the stiffness parameters also decrease from eight to four. In one case, four stiffness coefficients vanish,

whereas the remaining coefficients become constant. This occurs if the process load does not follow the angular vibrations

and there is no gap dependence on the oscillating parts of the process load. Numerical simulations showed that by applying

a specific process load model, the vibration orbit changed from the unbalance response by means of shape and vibration

origin. The unstable domain was further increased when the process load model was applied.

Measurements are necessary to select a realistic process model for a specific application. The derived model can be used

in product development to choose suitable system parameters and thus to avoid dynamical problems.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A key component in panel board production is the fibre refiner (an overhung rotor), whose task is to break
cellulose wood chips into slender fibres. Because the fibre refiner is driven by an electrical motor, the operating
spin speed is 25 or 30Hz depending on the frequency of the electrical grid. Rotordynamics are essential when
developing new fibre refiners, since vibrations can cause serious damage. To predict the dynamics,
mathematical models are needed. For simplicity the system is often assumed linear with constant coefficients
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a1�a4 constants
C centre of the rotor
C damping matrix
FpX ; F pY ; FpZ process forces
FpZs constant part of the axial process force
FpZo oscillating part of the axial process force
f pX ; f pY ; f pj; f py process load coefficients
fp process load vector
Fr restoring load vector
fu unbalance load vector
Jp polar moment of inertia
Jt transversal moment of inertia
k11, k12, k21, k22 structure stiffness coefficients
kp1�kp8 process stiffness coefficients
Ks stiffness matrix due to the structure
Kp stiffness matrix due to the process
MpX ; MpY ; MpZ process moments
m rotormass
M mass matrix
O origin of fixed frame
p pressure in refining zone
P point on rotor
r radial coordinate on the rotor
r1, r2 inlet and outlet radius
R1, R2 transformation matrices
s gap between stator and rotor at a certain

position on the rotor
snom nominal gap, i.e. gap between centre of

rotor and stator
t time

x, y translational dof in a frame following the
angular vibrations

X vector of generalised coordinates
X, Y translational dof in fixed frame
a, b proportional damping constants
g1, g2 constants for the stationary part of axial

process force measurement
g3(i), g4(i) constants for the oscillating parts of

axial process force measurement
dc common pressure distribution function
d1, d2 pressure distribution functions for the

stationary part
d3(i), d4(i) pressure distribution functions for the

oscillating parts
e eccentricity
Z angular coordinate on the rotor
y, j rotational dof in fixed frame
m friction coefficient
oi ith process frequency
si ith undamped eigenfrequency
zi damping ratio of ith mode
O spin speed

Subscripts

i counter
n number of frequency components in-

cluded

Superscripts

4 indication of scaled variable
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and with unbalance as the external load. Design calculations such as Campbell diagrams and critical speeds
are then a straightforward procedure [1].

One issue about this method is that the rotor interaction with the medium between the stator and rotor in
fibre refiners, as well as in other systems like breaks, turbines, and compressors, can be even more important
for the dynamics than the unbalance. This load can also be state dependant, meaning that the system
characteristics change.

This kind of interaction was studied by Sinou et al. [2], who used a model that changes the stiffness of the
system to illustrate how complicated motion can be expected for certain parameter ranges. Destabilising
Alford forces is another example that have been studied, for instance in turbines [3] and compressors [4–6].
Few publications concern the process load in fibre refiners, possibly because material modelling is difficult due
to the presence of all three phases (gas, liquid and solid material) in the fibre refining process [7]. Certain
properties of the material in the refining zone have been characterised [8–11]. However, there exists no
validated material model for the refining process, including all three phases to be implemented in a simulation
programme at a macro-level. For this reason, different assumptions on the process load were made to study
the different phenomena. Whalley and Mitchell [12], for example, studied the torsion vibration of a twin stator
disc refiner setup, where the process was assumed to lead to a friction force that varied with a certain pulsating
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frequency. This model does not include the flexural degrees of freedom (dof) and hence cannot be used to
discuss the effects of a process gap dependency between rotor and stator. Frazier [13] used a hydrodynamic
lubrication model for the process load to show how the thrust load depends on the gap between the stator and
rotor. Jiang and Yu [14] studied lateral vibrations of a rotor-bearing system with hydrodynamic thrust
bearing, demonstrating how such thrust bearing can be used to increase the critical speeds. Ouellet and Weiss
[15] studied nonlinear axial vibrations with an assumed viscoelastic behaviour of the pulp in the refining zone.

Efforts have been made to measure directly in the refining zone. The environment in the refining zone is
harsh on measuring equipment, but some results have still been found, e.g. measurements of the shear force,
normal force and temperature variations [16–18].

The approach throughout this paper is to use measured data of the axial force to justify a mathematical
model for the process inside the refining zone. The parameters included in this model will depend on numerous
process parameters, e.g. dilution of water, raw material and type of segments. The objective of this paper is to
derive and implement a time- and displacement-dependant process load model and to indicate how such a
model can affect the dynamics.

2. Derivation of a model for the axial process load

Measurements on industrial machines were conducted to justify a mathematical model of the refining
process. The measurements were carried out on a single-disc refiner working with an approximate power of
5MW in production. Fig. 1 shows the time history of the axial bearing force in the shaft, when the nominal gap
(snom) between the centre of the stator and the rotor is constant. The sign ‘‘4‘‘indicates that the variables have
been scaled and maintained throughout the entire paper. Although the numerical data in the x-domain are not
printed in Figs. 1–3, the scale is linear in all figures. These figures are constructed this way because simply
motivating how the model is derived is not enough. The signal in Fig. 1 can be represented by a constant part
ðFpZsÞ together with an oscillating part ðFpZoÞ.

Hence, the axial process force is hence assumed to be

F pZ ¼ F pZs þ FpZo. (1)

The markers in Fig. 2 show how the constant part of the measured axial process force varies with the
nominal gap.

Assuming a linear dependency of the nominal gap gives,

FpZs ¼ �g1 þ g2snom (2)

for the constant axial process force, where g are constants. The solid black line in Fig. 2 is given by Eq. (2),
where the parameters have been fitted to match the measured data.
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Fig. 1. Time history of bearing force.



ARTICLE IN PRESS

-0.6

-0.7

-0.8

-0.9

-0.5

-1

-1.1

S
nom

F
p
Z

∧

Fig. 2. Constant axial process force as function of the nominal gap.
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Fig. 3. Discrete Fourier transform amplitude of the oscillating axial process force for (a) the low-, (b) middle- and (c) high frequency

components.
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Fig. 3 shows the resulting DFT-amplitude (square root of sine and cosine components) as a function of the
nominal gap for three frequencies. The amplitudes are shown in Fig. 3(a) (lowest frequency component of the
three), Fig. 3(b) (medium frequency component) and Fig. 3(c) (highest frequency component).
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Fig. 3 does not indicate if the oscillating part depends on the nominal gap. If a nominal gap dependency of
the oscillating parts exists, it is assumed to be linear. This is assuming

F pZo ¼
Xn

i¼1

ð�g3ðiÞ þ g4ðiÞsnomÞ cosðoitÞ (3)

for the oscillating part, where g are constants, oi is the ith frequency component and n is the number of
frequency components to be used. Inserting Eqs. (2) and (3) into Eq. (1) gives

F pZ ¼ �g1 þ g2snom þ
Xn

i¼1

ð�g3 ið Þ þ g4 ið ÞsnomÞ cosðoitÞ (4)

for the axial process force.

3. Process models in the refining zone and their coupling to the axial process force

This paper hypothesises that the process can be treated as a displacement-dependant pressure, which
together with a frictional coefficient affects the dynamics of the system. However, after integration over the
active area no unique pressure distribution fits the axial process force given by Eq. (4), though infinite
possibilities exist.

3.1. The rotordynamical model

To derive a load model of the refining process, the rotordynamical model used must be defined. The refiner
is considered to be a rigid 4 dof body supported by a bearing structure with linear stiffness. X and Y in the i
and j directions are the translational dof, while j and y are the rotational dof about these axes (see Fig. 4). The
Cartesian coordinate system OXYZ is fixed in space and the point C is attached to the geometrical centre of
the rotor. When the machine is running on idle and subjected to unbalance, the corresponding equation of
motion can be written as [19]

M €Xþ ðCþ OGÞ _Xþ KsX ¼ fuðtÞ, (5)
Fig. 4. Model of the refiner.
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where

M ¼

m 0 0 0

0 m 0 0

0 0 Jt 0

0 0 0 Jt

2
6664

3
7775; Ks ¼

k11 0 0 �k12

0 k11 k12 0

0 k21 k22 0

�k21 0 0 k22

2
6664

3
7775; G ¼

0 0 0 0

0 0 0 0

0 0 0 Jp

0 0 �Jp 0

2
66664

3
77775;

C ¼ aMþ bKs; f u ¼ ½m� O
2 cosðOtÞ m� O2 sinðOtÞ 0 0 �T and X ¼ ½X Y j y �T. (6211)

The mass of the rotor is denoted m, the transversal/polar mass moment of inertia Jt/Jp, and the structural
stiffness coefficients are denoted kij. The spin speed is denoted O, eccentricity e and fu is the corresponding
unbalance load. Proportional damping is applied where the constants a and b are coupled to the two
undamped eigenfrequencies (s1 and s2) at standstill, according to

zi ¼
a
2si

þ
bsi

2
ði ¼ 1; 2Þ, (12)

where js1jojs2j and zi is the damping ratio of the ith mode.
When the process is treated as a pressure it will act normal to the rotor front surface, i.e. it follows the

angular vibrations. To obtain the forces and moments in the fixed frame (X), a transformation matrix from a
frame coupled to the vibrations has to be defined.

The Cartesian coordinate system Cxyz in Fig. 4 follows the rotational dof, but not the spin. (r, Z) are polar
coordinates in the xy-plane, m the friction coefficient and O the spin speed. The relation between the two
Cartesian systems is given by [19]

X

Y

Z

8><
>:

9>=
>; ¼

X C

Y C

ZC

8><
>:

9>=
>;þ RT

1 R
T
2

x

y

z

8><
>:

9>=
>;, (13)

where

R1 ¼

1 0 0

0 cosðjÞ sinðjÞ

0 � sinðjÞ cosðjÞ

2
64

3
75 and R2 ¼

cosðyÞ 0 � sinðyÞ

0 1 0

sinðyÞ 0 cosðyÞ

2
64

3
75. (14,15)

The Coulomb friction model is used in this paper. For simplicity the direction of the friction force is
assumed to be opposite to the spin at every point P (see Fig. 4), i.e. the model considers neither the whirling
nor the process stream for the direction of the shear force.

The resulting forces and moments due to a pressure p and friction m can be expressed in the OXYZ

coordinate as

FpX

FpY

FpZ

8><
>:

9>=
>; ¼ RT

1R
T
2

R 2p
0

R r2
r1
m � p � r � sinðZÞqr qZ

�
R 2p
0

R r2
r1
m � p � r � cosðZÞqr qZ

�
R 2p
0

R r2
r1

p � rqr qZ

8>>><
>>>:

9>>>=
>>>;

(16)
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Fig. 5. Load models with: (a) general pressure distribution; (b) distributed spring; and (c) radial pressure distribution.
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MpX

MpY

MpZ

8><
>:

9>=
>; ¼ RT

1R
T
2

�
R 2p
0

R r2
r1

pr2 sinðZÞqr qZR 2p
0

R r2
r1

pr2 cosðZÞqr qZ

�
R 2p
0

R r2
r1
mpr2qr qZ

8>>><
>>>:

9>>>=
>>>;
, (17)

where r1 is the inlet radius and r2 the outlet radius of the refining zone.

3.2. Load models

Four different load model cases will be discussed here, using three different ways of dealing with the
pressure distribution.

The pressure in Fig. 5(a) is allowed to vary on any point on the rotor, here termed ‘‘general pressure
distribution’’. In Fig. 5(b) the general pressure distribution is supposed to work as ‘‘distributed springs’’,
i.e. the pressure acts only in the Z-direction. In Fig. 5(c) the angular pressure variations are excluded; this case
is referred to as ‘‘radial pressure distribution’’.

3.2.1. Derivation of the load model with general pressure distribution

As shown in the measurements [16], the shear force depends on the radius. Assuming a constant friction
coefficient, the pressure must also depend on the radius. This model should also be able to handle variations in
circumference (see Fig. 5(a)). Since the pressure should also give rise to a resulting axial force equivalent to the
axial process force derived by the measurements (see Eq. (4)), these assumptions result in a proposed pressure
distribution

p ¼ ðd1ðr; ZÞ � d2ðr; ZÞsÞ þ
Xn

i¼1

ðd3 ið Þðr; ZÞ � d4 ið Þðr; ZÞsÞ cosðoitÞ

 !
, (18)

where

s ¼ snom þ rðcosðjÞ sinðyÞ cosðZÞ � sinðjÞ sinðZÞÞ (19)

and d is any suitable function of r and Z. Assuming small angles of the vibrations, inserting Eqs. (18) and (19)
into Eq. (16) gives,

F pZ ¼ �

Z 2p

0

Z r2

r1

rd1ðr; ZÞqr qZþ
Z 2p

0

Z r2

r1

rd2ðr; ZÞqr qZ
� �

snom

�

Z 2p

0

Z r2

r1

Xn

i¼1

rðd3 ið Þðr; ZÞ � d4 ið Þðr; ZÞsnomÞ cosðoitÞqr qZ. ð20Þ

Eq. (20) must be able to fit the axial process force given by Eq. (4). Collecting equal terms by comparing
these equations gives,

g1 ¼
Z 2p

0

Z r2

r1

rd1ðr; ZÞqr qZ; g2 ¼
Z 2p

0

Z r2

r1

rd2ðr; ZÞqr qZ,

g3 ið Þ ¼

Z 2p

0

Z r2

r1

rd3 ið Þðr; ZÞqr qZ and g4 ið Þ ¼

Z 2p

0

Z r2

r1

rd4 ið Þðr; ZÞqr qZ. ð21224Þ
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This means that constants within the functions d must be chosen so that Eqs. (21)–(24) are fulfilled.
Inserting Eqs. (18) and (19) into Eqs. (16) and (17), together with the further assumption of small angles gives,

�F pX ¼ kp1jþ kp2y� f pX , (25)

�F pY ¼ kp3jþ kp4y� f pY , (26)

�MpX ¼ kp5jþ kp6y� f pj, (27)

�MpY ¼ kp7jþ kp8y� f py. (28)

The stiffness coefficients ðkp1 � kp8Þ as well as the external loads ðf pX ; f pY ; f pj; f pyÞ are given in
Appendix A. These expressions shows that the general pressure distribution gives rise to a time-dependant
stiffness matrix,

KpðtÞ ¼

0 0 kp1 kp2

0 0 kp3 kp4

0 0 kp5 kp6

0 0 kp7 kp8

2
66664

3
77775 (29)

together with an external load vector (i.e. loads independent of the state of the system),

fp ¼ ½ f pX f pY f pj f py �
T. (30)

The torsion moment becomes

MpZ ¼ �m
Z 2p

0

Z r2

r1

d1ðr; ZÞ þ d2ðr; ZÞsnom �
Xn

i¼1

ðd3 ið Þðr; ZÞ � d4 ið Þðr; ZÞsnomÞ cosðoitÞ

 !
r2qr qZ, (31)

which can be used to fit the power of the machine.
3.2.2. Derivation of a distributed spring load model

For the above analysis, the process was treated as a pressure so that the direction of the resulting forces
and moments then follow the angular vibration. If, however, the process is treated as distributed springs (see
Fig. 5(b)) only acting in the Z direction, the transformation matrices become unit matrices. From these
assumptions, the stiffness coefficients are

kp2 ¼ m
Z 2p

0

Z r2

r1

d2ðr; ZÞ þ
Xn

i¼1

d4 ið Þðr; ZÞ cosðoitÞ

 !
r2 sinðZÞ cosðZÞqr qZ, (32)

kp3 ¼ kp2, (33)

kp6 ¼ �

Z 2p

0

Z r2

r1

d2ðr; ZÞ þ
Xn

i¼1

d4 ið Þðr; ZÞ cosðoitÞ

 !
r3 cosðZÞ sinðZÞqr qZ, (34)

kp7 ¼ kp6, (35)

while all other coefficients remain unaffected. Notice that neither d1(g, Z) nor d3(g, Z) appear in the stiffness
matrix, which has been reduced to six coefficients. The external load vector remains unaffected by these
assumptions, i.e. given by Eqs. (A.9)–(A.12).
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3.2.3. Derivation of the load model with only radial pressure distribution

If the variation along the circumference (Z) is negligible compared to the variations along the radius of the
rotor, the pressure distribution is

p ¼ ðd1ðrÞ � d2ðrÞsÞ þ
Xn

i¼1

ðd3ðiÞðrÞ � d4ðiÞðrÞsÞ cosðoitÞ

 !
. (36)

The stiffness coefficients given by Eqs. (A.1)–(A.8) are then reduced to

kp1 ¼ �mp
Z r2

r1

d2ðrÞ þ
Xn

i¼1

d4ðiÞðrÞ cosðoitÞ

 !
r2qr, (37)

kp2 ¼ 2p
Z r2

r1

d1ðrÞ � d2ðrÞsnom þ
Xn

i¼1

ðd3ðiÞðrÞ � d4ðiÞðrÞsnomÞ cosðoitÞ

 !
r qr, (38)

kp3 ¼ �kp2, (39)

kp4 ¼ kp1, (40)

kp5 ¼ p
Z r2

r1

d2ðrÞ þ
Xn

i¼1

d4ðiÞðrÞ cosðoitÞ

 !
r3qr, (41)

kp6 ¼ 2pm
Z r2

r1

d1ðrÞ � d2ðrÞsnom þ
Xn

i¼1

ðd3ðiÞðrÞ � d4ðiÞðrÞsnomÞ cosðoitÞ

 !
r2qr, (42)

kp7 ¼ �kp6, (43)

kp8 ¼ kp5 (44)

while the external loads given by Eqs. (A.9)–(A.12) become zero, i.e.

fp ¼ 0 0 0 0
� �T

. (45)
3.2.4. Derivation of the load model when gap dependency of the oscillating parts is excluded

From the measurements presented in this paper, it could not be stated if the oscillating parts of the pressure
also vary with the gap. If these variations are negligible the pressure distribution reduces to

p ¼ ðd1ðr; ZÞ � d2ðr; ZÞsÞ þ
Xn

i¼1

d3ðiÞðr; ZÞ cosðoitÞ

 !
. (46)

The stiffness coefficients given by Eqs. (A.1)–(A.8) reduce to,

kp1 ¼ �m
Z 2p

0

Z r2

r1

d2ðr; ZÞr2sin
2
ðZÞqr qZ, (47)

kp2 ¼

Z 2p

0

Z r2

r1

d1ðr; ZÞ � d2ðr; ZÞðsnom � mr cosðZÞ sinðZÞÞ þ
Xn

i¼1

d3ðiÞðr; ZÞ cosðoitÞ

 !
r qr qZ, (48)

kp3 ¼ �

Z 2p

0

Z r2

r1

d1ðr; ZÞ � d2ðr; ZÞðsnom þ mr cosðZÞ sinðZÞÞ þ
Xn

i¼1

d3ðiÞðr; ZÞ cosðoitÞ

 !
r qr qZ, (49)

kp4 ¼ �m
Z 2p

0

Z r2

r1

d2ðr; ZÞr2cos2ðZÞqr qZ, (50)
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kp5 ¼

Z 2p

0

Z r2

r1

d2ðr; ZÞr3sin
2
ðZÞqr qZ, (51)

kp6 ¼

Z 2p

0

Z r2

r1

md1ðr; ZÞ � d2ðr; ZÞðmsnom þ r cosðZÞ sinðZÞÞ þ
Xn

i¼1

md3ðiÞðr; ZÞ cosðoitÞ

 !
r2qr qZ, (52)

kp7 ¼ �

Z 2p

0

Z r2

r1

md1ðr; ZÞ � d2ðr; ZÞðmsnom � r cosðZÞ sinðZÞÞ þ
Xn

i¼1

md3ðiÞðr; ZÞ cosðoitÞ

 !
r2qr qZ, (53)

kp8 ¼

Z 2p

0

Z r2

r1

d2ðr; ZÞr3cos2ðZÞqr qZ. (54)

The external loads given by Eqs. (A.9)–(A.12) reduces to,

f pX ¼ m
Z 2p

0

Z r2

r1

d1ðr; ZÞ � d2ðr; ZÞsnom þ
Xn

i¼1

d3ðiÞðr; ZÞ cosðoitÞ

 !
r sinðZÞqr qZ

 !
, (55)

f pY ¼ �m
Z 2p

0

Z r2

r1

d1ðr; ZÞ � d2ðr; ZÞsnom þ
Xn

i¼1

d3ðiÞðr; ZÞ cosðoitÞ

 !
r cosðZÞqr qZ

 !
, (56)

f pj ¼ �

Z 2p

0

Z r2

r1

d1ðr; ZÞ � d2ðr; ZÞsnom þ
Xn

i¼1

d3ðiÞðr; ZÞ cosðoitÞ

 !
r2 sinðZÞqr qZ, (57)

f py ¼

Z 2p

0

Z r2

r1

d1ðr; ZÞ � d2ðr; ZÞsnom þ
Xn

i¼1

d3ðiÞðr; ZÞ cosðoitÞ

 !
r2 cosðZÞqr qZ. (58)

4. Numerical results

When the process is applied, Eq. (5) is extended by the stiffness matrix KpðtÞ and the external load vector
fpðtÞ to

M €Xþ ðCþ OGÞ _Xþ ðKs þ KpðtÞÞX ¼ fuðtÞ þ fpðtÞ. (59)

This equation of motion is a linear ordinary differential equation with time-dependant coefficients, thus
general analytical closed-form solutions cannot be found by known methods. However, by numerical
simulations the time evolution can be derived. To illustrate the consequences of rotordynamics when
the process is applied, numerical simulations will thus be used. The derived general pressure distribution
(see Section 3.2.1) will be used here. For simplicity, only one frequency component will be considered for the
time-dependant part of the load model, and both inlet and outlet pressures are set to zero. The functions
d1�4ð1Þ are further assumed to be

d1�4ð1Þ ¼ a1�4dc, (60)

where a1�4 are constants and dc is a common pressure distributions function. By combining Eqs. (23)–(26) and
Eq. (62) the constants

a1 ¼ g1

�Z 2p

0

Z r2

r1

rdcðr; ZÞqr qZ; a2 ¼ g2

�Z 2p

0

Z r2

r1

rdcðr; ZÞqr qZ,

a3 ¼ l3ð1Þ

�Z 2p

0

Z r2

r1

rdcðr; ZÞqr qZ and a4 ¼ g4ð1Þ

�Z 2p

0

Z r2

r1

rdcðr; ZÞqr qZ: ð61264Þ
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Fig. 6. (a) Time evolution in X-direction and (b) corresponding FFT.
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Measurements were conducted [16] that showed the radial shear force to increase from the inlet of the
refining zone before passing a maximum and finally decreasing. However, no reports about the circumferential
distribution exist. Hence, the common pressure distribution is assumed to be

dc ¼ ð1� cosð2pðr� r1Þ=ðr2 � r1ÞÞÞð1þ sinðZÞÞ (65)

which is a non-axisymmetric distribution.
Inserting Eqs. (60)–(65) into Eqs. (A.1)–(A.12) results in expressions for the stiffness coefficients and

external load coefficients that can be solved.
For the numerical analyses, the set of parameters O ¼ 25 ðHzÞ, o1 ¼ 278 ðHzÞ, m ¼ 2778 ðkgÞ,

P ¼ 5� 106 ðWÞ, Jp ¼ 976 ðkgm2Þ, Jt ¼ 488 ðkgm2Þ, z1 ¼ z2 ¼ 0:1, k11 ¼ 5:25� 108 ðN=mÞ, k12 ¼ k21 ¼ 1:58
�108 ðN=radÞ, k22 ¼ 1:11� 108 ðNm=radÞ, � ¼ 1:00� 10�5 ðmÞ, g1 ¼ 1:60� 106 ðNÞ, g2 ¼ 1:00� 108 ðN=mÞ,
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g3ð1Þ ¼ 2:10� 103 ðNÞ, g4ð1Þ ¼ 2:00� 108 ðN=mÞ, r1 ¼ 0:1 ðmÞ, r2 ¼ 0:8 ðmÞ and snom ¼ 5:00� 10�3 ðmÞ is used.
The initial conditions for all simulations are set to zero.

Fig. 6(a) shows the time evolution in the X-direction when the process load model has been applied. The
corresponding FFT-diagram in Fig. 6(b) shows peaks for the spin speed as well as for the process frequency.

Fig. 7(a) shows the whirling orbit in the XY-plane at idle (unbalance response) and Fig. 7(b) shows the
corresponding whirling motion when the process load model is applied.

Because the homogenous part of the equation of motion is non-autonomous the stability cannot be
analysed by means of eigenvalues. However, the time dependency in this numerical example is periodic, i.e. the
Floquet theory [20] can be used. To make the effect of the time dependency more significant, the power in this
case is increased to P ¼ 10� 106 ðWÞ and the damping decreased to z1 ¼ z2 ¼ 0:01. Fig. 8 illustrates stability
charts when k11 and k12 are varied; black means stable vibration and white unstable. Fig. 8(a) shows the
situation at idle while Fig. 8(b) includes the process load model in the analysis.

5. Discussion and conclusions

The aim of this paper is to suggest a load model for the fibre refining process to be used in the product
development of such machines. The strategy is to fit a pressure distribution into axial force measurements.

From Fig. 1, it can be concluded that a significant time dependency in the axial force on the rotor exists due
to the process for a specific refiner. Fig. 1 shows that this axial force can be divided into one constant part
(compared to the vibration amplitude within the measured time), and a superimposed oscillating part with
different frequencies.

Fig. 2 shows how the constant part of the axial force changes with the nominal gap. From this figure it can
be concluded that a linear dependency can be used as an approximate model for the constant part of the axial
process load (see Eq. (2)).

From the DFT shown in Fig. 3, an uncertain coupling between the nominal gap and the oscillating part of
the load can be found. Hence, both no dependency and linear dependency on the gap are discussed in this
paper. As well, the effects of phase differences of the process load are neglected.

Combining the constant and oscillating parts result in an approximate expression of the axial process force
(see Eq. (4)).

An ordinary four dof model is used to discuss how the process is introduced in the rotordynamical
calculations (see Section 3.1). The process models concern variations of the gap inside the refining zone,
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meaning that translations in the X and Y directions will not lead to any change of process load (they do not
change this gap), which explains why the two leftmost columns in the process stiffness matrices (see for
example Eq. (29)) are zero. Since no unique pressure distribution fits the axial process force, four different
cases are presented.

In the general case, the pressure distribution depends on the radial position and angle on the rotor (see
Eq. (18)). Such pressure leads to an oscillating stiffness matrix and oscillating external loads in all four dof,
meaning that even if the rotor is completely balanced the process will still excite all dof. Therefore, it can be
concluded that for the general pressure distribution the process frequencies (included in the oscillating part)
must be considered in the design so that, for example, they do not coincide with the eigenfrequencies. All the
stiffness coefficients, kp1 � kp8, differ from each other and all are time dependant; hence, the corresponding
stiffness matrix becomes non-symmetrical and time dependant. Because the time dependency may consist of
many frequency components, the process stiffness matrix does not necessarily have to be periodic. On the
contrary, depending on the ratio between the components, it can also be quasi-periodic.

When the process is treated as distributed springs the number of different stiffness coefficients are reduced
to six, since kp2 ¼ kp3 and kp6 ¼ kp7 (see Eqs. (32)–(35)). Even for this case all stiffness coefficients consist of
an oscillating part. The external load vector remains the same as with the general pressure distribution case.

When the angular pressure variation is constant, the number of different stiffness coefficients is reduced to
four (since kp2 ¼ �kp3, kp4 ¼ kp1, kp6 ¼ �kp7 and kp8 ¼ kp5), though they all depend on time (see Eqs.
(37)–(44)). The external load vector becomes zero in this case, which is considered an advantage for design
purposes. The process frequencies vanish from the right side of the e.o.m., meaning that they will not lead to
resonance problems.

The last example of the pressure distribution is if the oscillating part does not depend on the gap. From Eqs.
(47)–(54), the number of different stiffness coefficients does not decrease. However, the coefficients
kp1; kp4; kp5 and kp8 do not depend on time. The external loads will still act in all directions and still oscillate
(see Eqs. (55)–(58)).

Note that combining the cases of distributed springs together with excluded angular pressure variations
leads to the conditions kp2 ¼ kp3 ¼ 0 and kp6 ¼ kp7 ¼ 0. If, besides this combination, the oscillating part does
not depend on the gap, the remaining four stiffness coefficients become constant. This means that the
homogenous part of the governing equation of motion would be autonomous; therefore, the dynamics are
known from the theory of linear systems with constant coefficients. This situation is strived for when designing
new refiners, since the dynamics can be predicted within the needed accuracy. How this situation is realised in
practice is yet to be uncovered. However, this paper shows the potential of refiners that lead to this kind of
pressure distribution in production.

From Fig. 6, it can be stated that for the specific set of parameters the rotor model vibrates with the
fundamental frequencies O (spin speed) and o1 (process speed). Fig. 7 shows that when the process model is
applied the whirling orbit in the XY-plane deviates from the circular unbalance response (see Fig. 7(a)).
Besides deviation by means of shape, the orbit is also displaced from the origin. It is important to control this
kind of static deflection due to the small gap between the stator and rotor in fibre refiners (�0.5mm). By
comparing Fig. 8(a) and (b) it can be concluded that the unstable domain increases when the process load
model is applied. Notice that when this load is excluded, the system is stable for k11k224k2

12 [21], which gives
the black area in Fig. 8(a).

It should be stated that the results presented in this paper are derived from measurements on a specific refiner
with a specific process. To generalise this model additional validation measurements have to be made. The idea
in this paper was to introduce basic dynamical features that may arise inside the refining zone when the machine
produces fibre. Even though the models are derived for refiners, the generality of the model makes them suitable
for a wide range of different applications. Finally, after additional measurements it is likely that the derived
process load model can be used in product development to evaluate the dynamics of refiner concepts.
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Appendix A. Process stiffness coefficients and external load

kp1 ¼ �m
Z 2p

0

Z r2

r1

d2ðr; ZÞ þ
Xn

i¼1

d4ðiÞðr; ZÞ cosðoitÞ

 !
r2sin2ðZÞqr qZ, (A.1)

kp2 ¼

Z 2p

0

Z r2
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Xn

i¼1
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!
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Z 2p
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Z 2p
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 !
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Z 2p
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Z r2
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d4ðiÞðr; ZÞ cosðoitÞ

 !
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Z 2p
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!
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Z 2p
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Z 2p
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f pX ¼ m
Z 2p
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f pj ¼ �

Z 2p
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i¼1
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r2 sinðZÞqr qZ, (A.11)
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Z 2p
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Z r2
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